
The BLOG Language Reference
(BLOG version 0.9)

Lei Li
Computer Science Division

University of California Berkeley
leili@cs.berkeley.edu

Stuart Russell
Computer Science Division

University of California Berkeley
russell@cs.berkeley.edu

July 15, 2014

Abstract

This document provides a reference for the syntax and semantics of BLOG, a probabilistic
programming language that represents one possible form of unification for probability and
first-order logic. A BLOG program consists of a set of assertions that jointly determine a
probability distribution over the space of first-order possible worlds (structures) definable using
the vocabulary of the program. In addition to allowing quantification over logical variables
denoting objects and relational uncertainty, BLOG has open-universe semantics, meaning that
it can represent uncertainty about the existence and identity of objects. Hence, it is suitable
for applications in which the existence of objects and events must be inferred from raw data.
The syntax as described in this document corresponds to BLOG version 0.9. This version
implements many improvements in syntax, usability, and efficiency.
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1 Introduction: Open-universe probability models and BLOG

The initial syntax and semantics of BLOG was described in [MMR04], and in [MMR+05]. The
authors of these two papers contributed to the first implementation of the BLOG language and
inference algorithms. Full details of the formal semantics are given in the Brian Milch’s PhD
thesis [Mil06].

This document is primarily concerned with the detailed syntax of BLOG, which has changed con-
siderably from the initial version; it is helpful, nonetheless, to understand the key semantic ideas,
which are based on first-order logic and have remained unchanged. A BLOG program defines a
probability distribution over a space of possible worlds. It does so by means of a set of type decla-
rations, number statements, and dependency statements. These statements describe the objects that
may exist in each world and introduce function symbols1 that carry information about the objects.
BLOG also supplies several built-in types and built-in functions that operate on those types. The
possible worlds are constructed from the function symbols and the objects, and the probability of
each world can be calculated from the information supplied by the dependency statements.

1.1 Example: Writing a BLOG program

A simple example serves to illustrate these concepts. Suppose that an urn contains unknown num-
bers of blue and green balls; balls are drawn one at a time and then replaced after the observed
color is noted. Color observation is 80% accurate. First, we define the types:

type Ball;
type Draw;

We declare two types and use semicolons (;) to terminate the type declarations. Then, we talk
about the objects that exist for each type. In this case, we know there are two colors and (say) eight
draws; by writing

distinct Draw Draw[8];

we name these objects and assert that the names refer to distinct Draw’s. On the other hand,
the number of balls is (say) equally likely to be anywhere from 1 to 4; for this we use a number
statement and UniformInt distribution:

#Ball ~ UniformInt(1,4);

Having made these assertions, we declare and write dependencies for the function symbols that
we need to describe the domain. First, the true color of a ball is equally likely to be blue or non-
blue; for this, we use a boolean predicate isBlue. It requires the built-in BooleanDistrib
distribution, which takes a positive real number as the probability of being true:

1Function symbols include as special cases predicate symbols (Boolean-valued functions) and constant symbols
(zero-ary functions).
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random Boolean isBlue(Ball b) ~ BooleanDistrib(0.5);

The ball drawn on each draw is chosen at random from the balls in the urn:

random Ball ballDrawn(Draw d) ~ UniformChoice({b for Ball b});

{b for Ball b} is the Set comprehension expression. Finally, we say that the observed color
is the same as the true color with 80% probability, i.e. the chance of observing blue balls being
80% if the true color of the ball is blue. Here we use the if-then-else expression:

random Boolean obsBlue(Draw d) ~
if isBlue(BallDrawn(d)) then
BooleanDistrib(0.8)

else
BooleanDistrib(0.2);

Having written dependency statements for all the function symbols, we are done.

1.2 Example, contd.: What does the program mean?

As noted earlier, the BLOG program defines a probability model over worlds. What are the worlds
in this case, and what are their probabilities?

Each world has a specific number of balls, #Ball=k, and thus contains balls Ball1, . . . ,Ballk in
addition to eight draws Draw1, . . . ,Draw8. (Notice we will use italics for objects in worlds, as
distinct from typewriter font for symbols in the BLOG language.) A particular world is fixed by
setting the values of every function symbol for every possible tuple of objects of the appropriate
types. We call the value of a function symbol applied to a particular tuple of objects a basic random
variable or BRV. For this domain, the BRVs are:

• isBlueBalli , either true or f alse, for i=1, . . . ,k;

• ballDrawnDraw j , one of Ball1, . . . ,Ballk, for j=1, . . . ,8;

• obsDraw j , either true or f alse, for j=1, . . . ,8.

For each k, there are 2k values for the isBlue BRVs, k8 values for the ballDrawn BRVs, and 28

values for the obsBlues. The total number of worlds is thus ∑
4
k=1 2k · k8 · 28=282,135,040. The

probability of any particular world is just the product of the probabilities of the choices made in
“constructing” the world, i.e., choosing values for the number variables and BRVs in topological
order. For example, we might choose

• #Ball=1 with probability 0.25;

• isBlueBall1 = true with probability 0.5;

• ballDrawnDraw j =Ball1 with probability 1 (the only choice!) for j=1, . . . ,8;
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• . . .ballDrawnDraw8 = . . .=Ball1 with probability 1;

• obsBlueDraw j =Blue with probability 0.8, for j=1, . . . ,8.

The probability of this world is 0.25×0.5×18×0.88=0.02097152.

1.3 Example, contd.: Evidence and queries

Once a model has been defined by a BLOG program, evidence can be supplied by evidence state-
ments. Evidence is supplied by asserting observed values for expressions. arguments (which may
themselves be complex terms). In our case, we might assert the following:

obs obsBlue(Draw[0]) = true;
obs obsBlue(Draw[1]) = false;
obs obsBlue(Draw[2]) = true;
obs obsBlue(Draw[3]) = false;
obs obsBlue(Draw[4]) = true;
obs obsBlue(Draw[5]) = false;
obs obsBlue(Draw[6]) = true;
obs obsBlue(Draw[7]) = false;

Given evidence, a query statement indicates a posterior probability of interest. We can query the
value of any expression by adding a query statement to the file. Each such statement will cause
the inference engine to be invoked and the answers—probabilities for each possible value of the
expression—to be returned to the standard output stream. Alternative output format is available
but it is out of the scope. Readers may refer to BLOG user’s manual 2.

query size({b for Ball b});

generates the following answers:

Distribution of values for size({b for Ball b : true})
1 0.07696467881871667
2 0.2749155437572819
3 0.3066400745347743
4 0.34147970288922114

query ballDrawn(Draw[0]) == ballDrawn(Draw[1]);

generates answers

Distribution of values for (ballDrawn(Draw[0]) = ballDrawn(Draw[1]))
false 0.7070034886998044
true 0.29299651130018706

2http://bayesianlogic.cs.berkeley.edu/pages/user-manual.html
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2 Syntax description conventions

In describing the syntax of BLOG, we use the following conventions:

• Keywords of the language appear in bold green text:

type Ball;

• User-defined names (e.g., Ball) and all literal values appear in plain black text.

• Built-in types appear in bold red text:

fixed Real x = 4.567;

• Built-in distributions appear in plain blue text:

random Integer N ~ Poisson(12);

• Function names appear in blue text:

random Real height(Person p) ~ Gaussian(6, 1);

• The dot-dot-dot ... notation indicates that additional elements can be added, similar to
those preceding it.

• Optional elements appear in angle brackets:

if boolean-expression then expression <else expression>;

3 BLOG Program

A BLOG program consists a sequence of statements, each ending with a semicolon(;). The fol-
lowing kinds of statements are recognized:

1. Type declarations,
2. Distinct symbol declarations,
3. Fixed function declarations,
4. Random function declarations,
5. Origin function declarations,
6. Number statements,
7. Evidence statements, and,
8. Query statements.

Type declarations, distinct symbol declarations, number statements and their associated origin
function declarations serve to populate worlds with objects. Fixed and random function declara-
tions introduce properties of objects and relationships among objects and define distributions over
the worlds that can be constructed using these functions.
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A BLOG program can be written in a single file. However, it is also typical to write a large BLOG
program in multiple files. By convention, .blog suffix is used for BLOG program, and .dblog
for those with Timestep. Within a single file, the ordering of statements does not affect their
semantic interpretation. However, while a BLOG program consists of multiple files, they should
be organized into an order such that statements in later files only refer to symbols defined within
the same file or before. Such order is called loading order of a BLOG program.

4 Lexical tokens

BLOG tokens are case sensitive.

4.1 Keywords

Keywords in BLOG have preserved semantics. Currently there are the following keywords:

type distinct fixed random origin
if then else case in
obs query true false null

4.2 Operators and Punctuation

BLOG supports the following punctuations:

; { } ( ) [ ]
: = ~ , # .

Note . is different from . in real numbers. It is only used in referring the underlying class name
for a distribution. These punctuations are used to separating expressions or statements. { } and
( ) always appear in pairs.

BLOG supports the following operators,

+ - * / ^ %
> < >= <= == !=
! & | -> =>

The semantic interpretation of these operators are described in Section B.
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4.3 Identifiers

An identifier starts with either 26 alphabetical characters (a to z, A to Z) or underscore (_). Then
followed by any number of the 26 alphabetical characters, underscores, or digits. An identifier
should not collide with keywords. Identifiers are used to refer type names, functions, distribu-
tion, distinct symbols, and logical variables. For example, x, _abc1def, and abs are all valid
identifiers. The first two can be used as type names, distinct symbol names, or logical variables.
The last one, abs refers to the library function abs() which returns absolute value of the input
argument.

4.4 Literals

Boolean literal There are two Boolean literals: true and false.

Integer literals Integer literals are defined for all integers, ranging from −231 to 231−1, e.g.
-123, 0, 7, 50000.

Real literals Real literals are defined for real numbers. Each real number is a double-precision
64-bit IEEE 754 floating point. The maximal positive Real value is 1.7976931348623157×10308,
while the minimal positive Real value is 4.9406564584124654× 10−324. In real literals, a zero
on either side of the decimal point can be omitted: 123., 123.45, 0.123, .123, -45.6. Sci-
entific notation is also supported: 123.45e-2, 123.45E-2, 123.45e1, 123.45e+1.

Character and String literals Character literals are delimited by single quotes: ’s’, ’\n’.
String literals are delimited by double quotes: "hello\n\nworld".

Timestep literals Timestep’s correspond to nonnegative integers, but are a distinguished type
to allow for inference algorithms that are specialized for temporal models. Timestep literals
are distinguished by an @ prefix. They are defined for all non-negative timesteps: @0, @1, @654,
etc.

Null null is a special literal that can be assigned to any user declared type.

4.5 Whitespace and Comments

Tokens may be separated by whitespace characters: , tab-character, and new-line.

Comments are in the following two forms:
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• A single-line comment is a sequence of characters starts with // and extends to the end of
the line, or

• A multi-line comment is a sequence of characters between /* and */. Note any character
after the first /* and before the first */ is interpreted as comment. Therefore /* /* */ is
a valid comment, while /* /* */ */ is not because it has extra */, which BLOG does
not know how to interpret.

5 Declaring types

BLOG is a strongly typed language. At present the type system is extremely simple: there is no
type hierarchy and each object has exactly one type. Types must be specified for the arguments
and value of every function symbol. The types can be built-in-types or user-defined types from a
type declaration statement.

5.1 Built-in types

BLOG has the following built-in types:

• Boolean

• Integer

• Real

• Character

• String

• Timestep

• RealMatrix

Section 4.4 describes the literals defined for each type.

Section 5.4.2 describes how to construct a RealMatrix.

5.2 User-defined types

Additionally, a user may define his or her own types. The syntax for declaring a type in BLOG
is:

type type_name;
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Here type_name is an identifier. For example, the following line of BLOG declares a Citation
type:

type Citation;

5.3 Distinct symbols

Information about the objects that are elements of a user-defined type is usually provided via
a number statement, but there are cases where the objects are known and individually distin-
guishable, perhaps through observations. Names for such objects can be introduced as follows:

distinct type_name identifier1, identifier2, ...;

For example, an information extraction system might have 5 citations to work with; these can be
introduced by

distinct Citation Cite0, Cite1, Cite2, Cite3, Cite4;

This statement defines symbols naming 5 objects of type Citation. Technically, these are zero-
ary function symbols whose value type is Citation; they are necessarily distinct (i.e., Cite1
6= Cite2, etc.) and each refers to the same object in all worlds. In this sense, distinct symbols
play the same role as built-in literals.

With a large number of objects, explicit naming of each is inconvenient. In such cases, one can use
an implicit construction to define indexed symbols:

distinct type_name prefix[int];

where prefix is an identifier and int is a nonnegative integer. For example, the following
BLOG code declares one hundred symbols for Citations:

distinct Citation Cite[100];

Now the names Cite[0], Cite[1], etc., can be used to refer to these Citations. Note that
the symbols are indexed starting from 0.

5.4 Array and Matrix

Array types in BLOG include one-dimensional vectors and two-dimensional matrices. Functions
with integer arguments can play many of the roles usually played by arrays in ordinary program-
ming languages, but arrays in BLOG are nonetheless useful to represent values of sets of variables
whose interaction is best described by linear algebra operations on multiple values simultaneously,
rather than one variable at a time. For example, the velocity of an object in 3-D space can be
modeled as a vector-valued variable rather than three scalar variables. In such cases, distributions
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will tend to have vector and matrix parameters—e.g., the mean and covariance parameters of a
multivariate Gaussian.

Currently, only Integer matrix and Real matrix are fully supported. Arrays of user declared type
are only supported in distinct symbols and symbol reference as described in Section 5.3.

Arrays can be used as return type of functions, but not as arguments of functions. However, some
distributions take arrays as arguments.

5.4.1 Constructing List

As we have already seen, we can use square brackets, [] to construct a List. Elements in a List are
separated by commas (,). Lists can also be nested within other Lists. A shorthand notation is to use
semicolons (;) to separated multiple Lists. Thus, the following two Lists are equivalent:

[1, 2, 3; 4, 5, 6];
[[1, 2, 3], [4, 5, 6]];

Lists are used to assign values to matrix, or to pass parameters to functions.

5.4.2 Matrices

To define a RealMatrix:

fixed RealMatrix table = [[1, 2, 3], [4, 5, 6]];

The following shorthand syntax is also allowed:

fixed RealMatrix table = [1, 2, 3; 4, 5, 6];

Linear algebra operations on vectors and matrices are listed in in Appendix B, B.4.

5.4.3 Matrix indexing

The index of matrices starts from 0.

To access first row of the matrix:

a[0]

To access the first column of the matrix:

transpose(a)[0]

To access first element in the matrix:

a[0][0]
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Note that [] is an operator that applies on a RealMatrix and returns a RealMatrix. The
general form is expression1[expression2], where both expression can be any kind
of expression as long as the first is of RealMatrix type, and the second is of Integer type. In
order to obtain scalar value of a singleton matrix, use toReal. For example:

random Integer x ~ UniformInt(0, 2);
random Integer y ~ UniformInt(0, 2);
fixed RealMatrix a = [1, 2, 3; 4, 5, 6; 7, 8, 9];
fixed RealMatrix b = [1, 3, 5; 7, 9, 2; 4, 6, 8];
random Real z ~ toReal((a + b)[x][y]);
query z;

6 Dependency statements

A dependency statement constrains the value of functions applied to objects. In the case of ordi-
nary programming languages, as well as in the case of built-in functions in BLOG, the value of
a function applied to a given tuple of input objects is fixed, i.e., it is the same in all worlds. De-
pendency statements for fixed functions are described in Section 6.1. On the other hand, a random
function is one about whose values there is uncertainty, so that the values may vary across possible
worlds. Dependency statements for random functions are described in Section 6.2.

6.1 Fixed functions

BLOG allows the user to declare that there is no uncertainty concerning the value of a given
function; that is, the value of the function applied to given arguments is the same in all worlds.
Such a fixed function is declared as follows:

fixed type_name0 function_name(type_name1 var1, ...) =
fixed_expression;

This statement defines a fixed function with name function_name whose arguments are var1
(of type type_name1), etc., and whose return type is type_name0. The logical variables
var1, var2, etc., are implicitly universally quantified over all elements of the corresponding
types.

The function body is a fixed expression, which may be

• a literal from one of the built-in types or a declared distinct symbol;
• a logical variable from the argument list;
• a built-in operator, fixed function, or externally defined function applied to fixed expressions.
• other expressions containing no random function applications nor Distributions.

The following example defines a function to calculate the sum of squares:
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random Real sumsquare(Real x, Real y) = x^2 + y^2;

When a function has zero arguments, the resulting empty parentheses may be dropped in both the
declaration statement and in occurrences within expressions. A fixed function with no arguments
is called a fixed constant; for example:

fixed Real pi = 3.14159;
fixed Real CircleArea(Real r) = pi * r^2;

More types of expressions are in Section 8.

6.1.1 List interpretations

The ListInterp construct allows defining a relation by exhaustively listing the tuples for which
it holds. The first argument of ListInterp is the number of arguments to the relation. The
remaining arguments list the tuples for which the relation is true. The relation is implicitly false
for any tuple not listed. For example:

fixed Boolean Teaches(Professor p, Course c)
= ListInterp(2, Smith, CS106,

Jones, CS106,
Moriarty, Phil80,
Jones, Stat10);

With this definition, Teaches(Jones, CS106) evaluates to true, while Teaches(Jones,
Math101) evaluates to false.

6.1.2 Tabular interpretations

The TabularInterp construct allows defining a function by exhaustively listing the mapping it
performs from arguments to return value. The first argument to TabularInterp is the number
of arguments to the function. The remaining arguments list the arguments and return value for
which the function is defined. The function will return null for any other tuple of arguments. For
example:

fixed Integer Score(Student s, Course c)
= TabularInterp(2, Alice, CS106, 80,

Alice, Phil80, 55,
Bob, CS106, 65,
Bob, Stat10, 35);

With this definition, Score(Alice, Phil80) evaluates to 55, while Score(Bob, Phil80)
evalutes to null.
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6.2 Random functions

To declare a random function, there are two possible forms. The first describes a probabilistic
conditional dependency:

random type_name0 function_name(type_name1 var1, ...) ~
distribution_expression;

This form defines a random function with name function_namewhose arguments are var1 (of
type type_name1), etc., and whose return type is type_name0. The logical variables var1,
var2, etc., are implicitly universally quantified over all elements of the corresponding types and
may appear in the distribution expression. The statement asserts that for any possible instantiation
of the logical variables with objects, the resulting random variable has a conditional probability
distribution described by the corresponding instantiation of the distribution_expression.
The distribution_expression must return a concrete distribution.

For example, the following statement says the height of a tree has a Gaussian distribution whose
mean depends linearly on the tree’s age and the growth rate of its species:

random Real height(Tree x) ~
Gaussian(Growthrate(Species(x))*Age(x), 4.0);

The full syntax of distribution expressions is described in Section 9.

The second form describes a deterministic dependency:

random type_name0 function-name(type_name1 var1, ...) = expression;

As before, the logical variables may appear in the expression. Such a declaration is distinct from a
fixed function declaration because, although the dependency is deterministic, the expression may
contain other random function symbols. For example, to express the fact that the observed value
Y(t) of some temporal process is the underlying state X(t) plus an additive Gaussian noise term,
one may write

random Real Epsilon(Timestep t) ~ Gaussian(0.0,1.0);
random Real Y(Timestep t) = X(t) + Epsilon(t);

7 Number statements

As noted in Section 1, BLOG supports open-universe semantics, i.e., different worlds may contain
different numbers of objects and hence different numbers of random variables. For a user-defined
type, a number statement specifies a probability distribution over the number of objects of that
type, possibly depending on other aspects of the world. For example, intuitively the number of
fleas in the world depends on the number of dogs.

The simplest form of number statement omits any direct dependency on other objects:
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#type_name ~ count-distribution-expression;

The count-distribution-expression should be a distribution over the nonnegative in-
tegers (see Section 9.1). For example, the following example declares the number of Balls ac-
cording to a Poisson distribution:

#Ball ~ Poisson(10.0);

As with random function declarations, a number statement can use a deterministic dependency:

#type_name ~ count-expression;

The count-expression should evaluate to a nonnegative integer.

7.1 Origin functions

The general form for a number statement provides a link between the objects generated by the
statement and the objects on whose existence the new objects depend. For example, each flea’s
existence depends on the existence of its host dog. This link is expressed by an origin function.
Origin functions are declared as follows:

origin type_name0 function-name(type_name1);

An origin function has exactly one argument type and one return type. For example, we can declare
�Host as an origin function:

origin Dog Host(Flea);

In the number statement, the origin functions are attached to the type as follows:

#type_name(origin-function1=var1, ...) ~ distribution-expression;

For example, the number statement

#Flea(Host=d) ~ Poisson(2*Weight(d));

says that the number of fleas whose Host is dog d has a Poisson distribution whose mean is twice
the weight of the dog (bigger dogs have more fleas). In the formal semantics of BLOG, the objects
in each possible world contain their origins.

An object may have multiple origins. For example, in a radar system an aircraft may generate a
blip at each time step; the blip’s origins are the aircraft and the time step.

origin Aircraft Source(Blip);
origin Timestep Time(Blip);
#Blip(Source=a,Time=t) ~ Bernoulli(0.8);
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This says that the number of blips generated by aircraft a at time t is drawn from a Bernoulli
distribution that returns a 1 with probability 0.8 and a 0 otherwise.

There can be at most one number statement for a given type with a given set of origin functions.
More than one number statement can be provided as long as the set of origin functions for each
is distinct. For example, suppose some radar blips are false alarms that are not generated by any
aircraft:

#Blip(Time=t) ~ Poisson(FalseAlarmRate*DeltaT);

8 Expressions

An expression can include both fixed and random terms. Expressions are of the following forms:

• A literal of a built-in type, e.g., Integer, Real, String, Boolean, or Timestep.

• A user-defined symbol, one of the following:

– A symbol declared in a distinct symbol declaration (including indexed symbols),

– A fixed constant, i.e., a zero-ary function symbol declared as fixed.

– A random constant, i.e., a zero-ary function symbol declared as random (often called a
random variable).

– A logical variable within the scope of a function declaration with that variable as an
argument or within the scope of a quantifier or set expression with that variable in the
prefix.

• A function application expression function-name(e1, e2, ...), where function-name
is a fixed, random, origin, or user defined function symbol and the arguments e1, e2,, etc.,
are expressions of the appropriate types.

• A reference to an array element A[e1] or matrix element A[e1][e2] where e1 and e2
are arbitrary expressions of type Integer.References outside the array size will cause a
runtime error.

• A numerical expression such as e1 + e2, e1 - e2, e1 * e2, e1 / e2, + e1, -
e1, or (e1), where e1 and e2 are also expressions of type Integer or Real; with the
exception of /, the type of the expression will be Integer if all arguments are of type
Integer, and will be of type Real otherwise. The full list of arithmetic operators is
given in Appendix B. Expressions of the form det(M), where M is an expression denoting
a square matrix, and size(S), where S is a set expression, are also numerical expressions.

• A matrix expression such as e1 + e2, e1 - e2, e1 * e2, e1 / e2, + e1, - e1,
inv(e1) (e1), where e1 and e2 are [[vectors or matrices]] of the appropriate types and
sizes. The full list of matrix operators is given in Appendix B, B.4.

18



• A Boolean expression in one of the following forms:

– A logical expression: e1 & e2, e1 | e2, ! e1, (e1) where e1 and e2 are
expressions of Boolean type.

– A comparative expression: e1 > e2, e1 >= e2, e1 < e2, e1 <= e2, where e1
and e2 are expressions of comparable types.

– An equality expression: e1 == e2, e1 != e2, where e1 and e2 are any expres-
sions;

– A quantified formula (see Section 8.2).

• A set expression (see Section 8.3).

• A map expression (see Section 8.4).

• An if-then-else expression

if condition then expression1 else expression2

where condition is any Boolean expression and expression1 and expression2
are any expressions. The expression has the value of expression1 when condition
has the value true and expression2 when condition has the value false.

• A case expression

case expr in map

where expr is any Boolean expression and map is a map expression.

8.1 If-then-else expressions

An if-then-else expression allows one to use different expressions depending on aspects of the
conditioning context. The general form is

if condition then expression1 else expression2

where condition is a Boolean expression and expression1 and expression2 are expres-
sions. For example, suppose that a Coin is exactly Fairwith probability 0.99, and that a fair coin
comes up heads half the time and a biased coin comes up heads roughly 80% of the time:

random Boolean Fair(Coin c) ~ BooleanDistrib(0.99);
random Boolean Bias(Coin c) ~

if Fair(c) then Exactly(0.5)
else Beta(80,20);

The built-in distribution BooleanDistrib(p) assigns probability p to true and 1− p to
false. It is equivalent to Categorical(true -> p, false -> 1− p). Note that the
Bernoulli(p) distribution returns 0 or 1, which are not Boolean values.
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Note that if-then-else can be nested.

8.2 Quantified formula

BLOG allows quantified formulas, as in typed first-order logic. Each such formula constitutes a
Boolean expression, i.e. its result type is Boolean.

A universally quantified formula has the form

forall type_name var expression

where type_name is any type and var is the name of a logical variable. The expression is
any Boolean expression, possibly containing var. The formula has value true in a given world
iff expression has value true in every extended interpretation in which the value of var is an
object in the world of the given type. For example, the formula

forall Boolean b (b => b)

is true in all worlds, because the Boolean objects in all worlds are just true and false, and the
built-in function => has value true for both (true => true) and (false => false).

An existentially quantified formula has the form

exists type_name var expression

and has value true in a given world iff expression has value true in some extended interpre-
tation in which the value of var is an object in the world of the given type. For example, the
formula

exists Boolean b (b & b)

is true in all worlds, because the Boolean objects in all worlds are just true and false, and the
built-in function & has value true for (true & true).

Quantifier expressions may be nested, in which case the expression may contain logical vari-
ables from any of the enclosing quantifier expressions.

Currently, BLOG’s inference algorithms have no mathematical theorem-proving capability; hence,
quantification over infinite types leads to expressions that cannot be finitely evaluated.

8.3 Set expressions

A set expression denotes a set of objects satisfying a certain Boolean condition. All such sets exist
implicitly in every world, since every world contains objects and every Boolean expression has a
truth value for those objects. Normally it is not necessary to construct set objects explicitly, since
the same work can be done using predicate expressions, but sets are useful in two contexts:
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• When choosing values for functions, it is useful to refer to the set of candidate values, e.g.,
as an argument to a distribution.

• When observing that certain distinct objects exist and constitute all objects satisfying a cer-
tain condition, a set expression can be used as the observation (see Section 10).

As with quantified formulas, set expressions have a logical variable that ranges over a given type.
The most general form is

{expression for type_name var: condition}

where expression is any expression, possibly including var; type_name is any declared
or built-in type; var is a logical variable; and condition is any Boolean expression, possibly
containing var. The value of the set expression in any world is the set of objects that are possible
values of expression as var ranges over objects of the given type that satisfy condition.
For example, the set

{(x * x) for Integer x: x>0 & x<5}

contains the elements 1, 4, 9, 16.

If the : condition part is omitted, the condition is assumed to be true, i.e., the variable
ranges over all values of the given type. Thus, the set

{(b => b) for Boolean b}

contains just true, since (b => b) is true for both values of b.

8.4 Maps

A map expression, used as one term in a case expression, has the form

{key1 -> value1, key2 -> value2, ...}

For example, the following map expression could be used as the argument to a ategorical distribu-
tion]:

{true -> 0.3, false -> 0.7}

Each key must be a literal expression, while the values may be any expressions, as long as all value
expressions are of the same type. In particular, the keys in a map can literal arrays; for example,
the map

{[0, 0] -> 0, [0, 1] -> 0, [1, 0] -> 0, [1, 1] -> 1}

describes the AND of two one-bit inputs.

In a context where a distribution is required—for example, in a case distribution expressions—the
value expressions may all be distribution expressions. Distribution-valued maps with literal arrays
as keys are useful for describing conditional distributions with multiple discrete parents.
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8.5 Case expressions

In Section 8.1, the if-then-else expression constructs a simple two-element mixture distribution
whose index variable is Fair(c). More complex mixture distributions and other context-specific
dependencies can be constructed using nested-if-then-else expressions. Alternatively, one may use
a case expression, which has the form

case expr in map

where expr is an arbitrary expression and map is a mapping from keys to distribution expressions
(see Section 8.4). The case expression returns the distribution from the map whose key matches
the value of expr. For example, the following describes a mixture of three Gaussians:

random Integer Z ~ Categorical({0 -> 0.4, 1 -> 0.5, 2 -> 0.1});
random Real X ~

case Z in {
0 -> Gaussian(0,1),
1 -> Gaussian(0,9),
2 -> Gaussian(5,1)

};

In the terminology of Bayesian networks, Z in this example is a parent of X. If there are mul-
tiple parents, the conditional distribution can be written using a case expression with a list of
indices. Consider an example due initially to Judea Pearl: the alarm in a house goes off in re-
sponse to a burglary or an earthquake, but is somewhat unreliable. We might write the following
model:

random Boolean Burglary(House h) ~ BooleanDistrib(0.003);
random Boolean Earthquake ~ BooleanDistrib(0.002);
random Boolean Alarm(House h) ~

case [Burglary(h), Earthquake] in {
[false, false] -> BooleanDistrib(0.01),
[false, true] -> BooleanDistrib(0.40),
[true, false] -> BooleanDistrib(0.80),
[true, true ] -> BooleanDistrib(0.90)

};

9 Distribution expressions

In both random function declarations and number statements, probabilistic dependencies are spec-
ified by distribution expressions.

A distribution expression resembles a function application, with the name of the distribution fol-
lowed by its parameter arguments in parentheses. For example, a Bernoulli distribution with pa-
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rameter 0.8 returns 1 with probability 0.8, 0 otherwise:

Bernoulli(0.8)

The arguments may be any expressions and may include random functions. For example, we might
use a highly concentrated Beta prior for the bias of a normal coin, i.e., the probability that the coin
comes up 1 (heads) rather than 0 (tails).

random Real Bias(Coin c) ~ Beta(50,50);
random Integer Outcome(Coin c, Toss t) ~ Bernoulli(Bias(c));

Currently, many standard distributions are supported by BLOG. A full list of built-in distributions
and their parameter specifications appears in Appendix C. Distribution expressions may also use
user-defined distributions (Section 12.2).

9.1 Distributions over specific sets of interest

The support of a distribution is the set of values for which the distribution assigns non-zero prob-
ability. For example, the support of a Gaussian distribution is the entire real line, i.e., the type
Real. Two classes of distributions have special significance in BLOG:

• Boolean distributions: any distribution whose support is the set {true,false}. Such
distributions are suitable for random functions used as conditions in if-then-else expressions.
Among the built-in distributions, BooleanDistrib has this property.

• Count distributions: any distribution whose support is (a subset of) the nonnegative integers
{0,1,2, . . .}. Such distributions are suitable for the right-hand sides of number statements.
Among the built-in distributions, Bernoulli, Binomial, Geometric, NegativeBinomial,
Poisson, and UniformInt (with a nonnegative lower bound) have this property.

9.2 Categorical distribution

One particular built-in distribution of interest is the categorical distribution, which specifies prob-
abilities for each of a finite, discrete set of elements (all of which should be of a single type). The
mapping from elements to probabilities is described by a map expression with elements as keys
and probabilities as values. For example, the expression

Categorical({true -> 0.3, false -> 0.7});

defines a distribution with a 0.3 probability for true and a 0.7 probability for false.

BLOG will automatically normalize the probability values in the map, so that they sum to 1.0.
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9.3 UniformChoice from Set

It is possible to choose from a set using the following distribution:

UniformChoice({x for Item x : weight(x) > 10})

It is uniformly choosing from a set of items with weight over 10.

10 Observing evidence

Evidence statements may be declared in two ways. The first way is known as value evidence, and
is of the form:

obs expression1 = expression2;

where expression1 should be a random function application expression without free variables.
For example:

random Real x ~ Gaussian(1.0);
obs x = 0.5;

The second way is known as symbol evidence, and is of the form:

obs {x for type x : expression(x)} = { x1, x2, ...}

For example, in the aircraft example, blips may be specified in symbol evidence as follows:

obs {b for Blip b} = {b1, b2, b3};

This defines three blips with names b1, b2, and b3. These names can be used as expressions in
queries, which are described next.

11 Issuing queries

To specify a query, use the form:

query expression;

where expression is a function application expression without free variables or formulas. The
result will be the posterior distribution given the observations.

random Boolean even ~ BooleanDistrib(0.5);
random Boolean head ~

if even then BooleanDistrib(0.5)
else BooleanDistrib(0.8);
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obs head = true;
query even;

12 Extending BLOG

12.1 User-defined functions

A user-defined function must extend blog.model.AbstractFunctionInterp and pro-
vide a constructor that takes a single List argument. When compiling the class defining the
user-defined function, you must add the BLOG JAR file to the class path.

Here is an example user-defined function computing the logarithm in base 10 of a number:

package my_package;

import java.util.List;

import blog.model.AbstractFunctionInterp;

public class Log10Interp extends AbstractFunctionInterp {
public Log10Interp(List args) {
}

public Object getValue(List args) {
final double value = ((Number) args.get(0)).doubleValue();
return Math.log10(value);

}
}

To use this function from a model, declare it like this:

fixed Real log10(Real val) = my_package.Log10Interp();

Then log10 can be used just like any other fixed function, e.g. query log10(100.0).

Make sure my_package is on the class path. If you get an error like "No definition found
for non-random function log10", you most likely have a class-path problem. If my_package
is in the current working directory, you need not do anything. Otherwise, if my_package
lives at /some/absolute/path/my_package, launch BLOG with an environment variable:
CLASSPATH=/some/absolute/path blog model.blog.

For more advanced examples of user-defined functions, see blog.distrib.ListInterp and
blog.distrib.TabularInterp.

25



12.2 User-defined distributions

Probability distributions are implemented in Java. Distribution classes should implement the in-
terface blog.distrib.CondProbDistrib. By default, the BLOG engine will look up dis-
tribution classes in the package blog.distrib. In addition, it will look up distribution classes
under the default empty package.

Below is one example of a uniform distribution on Integers.

package blog.distrib;

import blog.common.Util;

public class UniformInt implements CondProbDistrib {

/**
* set parameters for UniformInt

* distribution

*
* @param params

* An array of [Integer, Integer]

* <ul>

* <li>params[0]: <code>lower</code> (Integer)</li>

* <li>params[1]: <code>upper</code> (Integer)</li>

* </ul>

*
* @see blog.distrib.CondProbDistrib#setParams(java.util.List)

*/
@Override
public void setParams(Object[] params) {

if (params.length != 2) {
throw new IllegalArgumentException("expected two parameters");

}
setParams((Integer) params[0], (Integer) params[1]);

}

/**
* For a non-null value of method parameter lower, sets the

* distribution parameter <code>lower</code> to method

* parameter lower. Similarly for <code>upper</code>.

* Then checks to see if assignment of parameters is legal.

* In other words, an assignment of parameters is legal

* if <code>lower <= upper</code>.
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*
* @param lower

* parameter <code>lower</code>

* @param upper

* parameter <code>upper</code>

*/
public void setParams(Integer lower, Integer upper) {

if (lower != null) {
this.lower = lower;
this.hasLower = true;

}
if (upper != null) {

this.upper = upper;
this.hasUpper = true;

}
if (this.hasLower && this.hasUpper) {

if (this.lower > this.upper) {
throw new IllegalArgumentException(

"UniformInt distribution requires that lower <= upper");
}
this.prob = 1.0 / (this.upper - this.lower + 1);
this.logProb = Math.log(this.prob);

}
}

private void checkHasParams() {
if (!this.hasLower) {

throw new IllegalArgumentException("parameter lower not provided");
}
if (!this.hasUpper) {
throw new IllegalArgumentException("parameter upper not provided");

}
}

/*
* (non-Javadoc)

*
* @see blog.distrib.CondProbDistrib#getProb(java.lang.Object)

*/
@Override
public double getProb(Object value) {
return getProb(((Integer) value).intValue());
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}

/**
* Returns the probability of the UniformInt distribution having

* outcome <code>value</code>.

*/
public double getProb(int value) {
checkHasParams();
return (value >= lower) && (value <= upper) ? prob : 0;

}

/*
* (non-Javadoc)

*
* @see blog.distrib.CondProbDistrib#getLogProb(java.lang.Object)

*/
@Override
public double getLogProb(Object value) {
return getLogProb(((Integer) value).intValue());

}

/**
* Returns the log probability of the UniformInt distribution having outcome

* <code>value</code>.

*/
public double getLogProb(int value) {

checkHasParams();
return ((value >= lower) && (value <= upper)) ? logProb

: Double.NEGATIVE_INFINITY;
}

/*
* (non-Javadoc)

*
* @see blog.distrib.CondProbDistrib#sampleVal()

*/
@Override
public Object sampleVal() {

return sample_value();
}

public int sample_value() {
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checkHasParams();
return lower + Util.randInt(upper - lower + 1);

}

@Override
public String toString() {

return getClass().getName();
}

/** Parameter <code>lower</code>. */
private int lower;
/** Flag indicating whether <code>lower</code> has been set. */
private boolean hasLower;
/** Parameter <code>upper</code>. */
private int upper;
/** Flag indicating whether <code>upper</code> has been set. */
private boolean hasUpper;
/**
* The probability of an outcome between <code>lower</code> and

* <code>upper</code> inclusive.

*/
private double prob;
/**
* The log probability of an outcome between <code>lower</code> and

* <code>upper</code> inclusive.

*/
private double logProb;

}

13 Comprehensive examples

13.1 Burglary

The following example was due initially to Judea Pearl: the alarm in a house goes off in re-
sponse to a burglary or an earthquake, but is somewhat unreliable. We might write the following
model:

type House;

distinct House Maryhouse, Johnhouse, Cathyhouse, Rogerhouse;
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random Boolean Burglary(House h) ~ BooleanDistrib(0.003);
random Boolean Earthquake ~ BooleanDistrib(0.002);
random Boolean Alarm(House h) ~

case [Burglary(h), Earthquake] in {
[false, false] -> BooleanDistrib(0.01),
[false, true] -> BooleanDistrib(0.40),
[true, false] -> BooleanDistrib(0.80),
[true, true ] -> BooleanDistrib(0.90)

};

obs Alarm(Maryhouse) = true;
obs Alarm(Johnhouse) = true;
obs Alarm(Cathyhouse) = true;
obs Alarm(Rogerhouse) = false;

query Earthquake;

BLOG inference engine will produce the following likelihood of earthquake.

Number of samples: 10000
Distribution of values for Earthquake
true 0.967140181036552
false 0.03285981896344725

13.2 A hidden Markov model for genetic sequences

Example 1 (Hidden Markov models). The following represents a hidden Markov model for genetic
sequences with four states and four output symbols. The state at each time step transitions to
another with respect to a conditional distribution specified by a TabularCPD. Each state at each
time step emits an observation with respect to another CPD. After making a few observations, we
can query the states for each time step.

type State;
distinct State A, C, G, T;

type Output;
distinct Output ResultA, ResultC, ResultG, ResultT;

random State S(Timestep t) ~
if t == @0 then
Categorical({A -> 0.3, C -> 0.2, G -> 0.1, T -> 0.4})

else case S(prev(t)) in {
A -> Categorical({A -> 0.1, C -> 0.3, G -> 0.3, T -> 0.3}),
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C -> Categorical({A -> 0.3, C -> 0.1, G -> 0.3, T -> 0.3}),
G -> Categorical({A -> 0.3, C -> 0.3, G -> 0.1, T -> 0.3}),
T -> Categorical({A -> 0.3, C -> 0.3, G -> 0.3, T -> 0.1})

};

random Output O(Timestep t) ~
case S(t) in {

A -> Categorical({
ResultA -> 0.85, ResultC -> 0.05,
ResultG -> 0.05, ResultT -> 0.05}),

C -> Categorical({
ResultA -> 0.05, ResultC -> 0.85,
ResultG -> 0.05, ResultT -> 0.05}),

G -> Categorical({
ResultA -> 0.05, ResultC -> 0.05,
ResultG -> 0.85, ResultT -> 0.05}),

T -> Categorical({
ResultA -> 0.05, ResultC -> 0.05,
ResultG -> 0.05, ResultT -> 0.85})

};

/* Evidence for the Hidden Markov Model.

*/

obs O(@0) = ResultC;
obs O(@1) = ResultA;
obs O(@2) = ResultA;
obs O(@3) = ResultA;
obs O(@4) = ResultG;

/* Queries for the Hiddem Markov Model, given the evidence.

* Note that we can query S(5) even though our observations only

* went up to time 4.

*/

query S(@0);
query S(@1);
query S(@2);
query S(@3);
query S(@4);
query S(@5);

BLOG will generate the following results using the particle filtering algorithm.
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Distribution of values for S(@0)
C 0.8128524436090175
T 0.09473684210526356
A 0.06905545112781902
G 0.023355263157894345
Distribution of values for S(@1)
A 0.8700181159420364
G 0.05365942028985556
T 0.05143115942029019
C 0.024891304347826236
Distribution of values for S(@2)
A 0.7075761624799592
C 0.09974612506680965
G 0.0965058792089793
T 0.0961718332442546
Distribution of values for S(@3)
A 0.7633727477477481
C 0.08085585585585582
G 0.07908220720720713
T 0.07668918918918921
Distribution of values for S(@4)
G 0.8739530096536214
C 0.050912123793299964
T 0.05014906303236865
A 0.02498580352072714
Distribution of values for S(@5)
A 0.2989778534923363
C 0.2949673480976736
T 0.2767248722316938
G 0.12932992617830938
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A BLOG Grammar Definition

program ::= opt_statement_lst ;

opt_statement_lst ::=
/* EMPTY */

| statement_lst ;

statement_lst ::=
statement SEMI statement_lst

| statement statement_lst
| statement SEMI
| statement ;

statement ::=
declaration_stmt

| evidence_stmt
| query_stmt ;

declaration_stmt ::=
type_decl

| fixed_func_decl
| rand_func_decl
| origin_func_decl
| number_stmt
| distinct_decl
| parameter_decl
| distribution_decl ;

type_decl ::= TYPE ID ;

type ::=
refer_name

| list_type
| array_type
| map_type ;

list_type ::= LIST LT refer_name GT ;

array_type_or_sub ::= refer_name LBRACKET ;

array_type ::=
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array_type_or_sub RBRACKET
| array_type LBRACKET RBRACKET ;

map_type ::= MAP LT type COMMA type GT ;

opt_parenthesized_type_var_lst ::=
/* EMPTY */

| parenthesized_type_var_lst
| type_var_lst ;

parenthesized_type_var_lst ::=
LPAREN RPAREN

| LPAREN type_var_lst RPAREN ;

extra_commas ::=
COMMA COMMA

| extra_commas COMMA ;

type_var_lst ::=
type ID COMMA type_var_lst

| type ID
| type ID extra_commas type_var_lst
| type ID type_var_lst
| type COMMA type_var_lst ;

fixed_func_decl ::=
FIXED type_type ID opt_parenthesized_type_var_lst
EQ expression ;

rand_func_decl ::=
RANDOM type_type ID opt_parenthesized_type_var_lst
dependency_statement_body ;

number_stmt ::=
NUMSIGN refer_name opt_parenthesized_origin_var_list

dependency_statement_body
| NUMSIGN opt_parenthesized_origin_var_list
dependency_statement_body ;

opt_parenthesized_origin_var_list ::=
/* Empty */

| LPAREN origin_var_list RPAREN ;
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origin_var_list ::=
ID EQ ID COMMA origin_var_list

| ID EQ ID extra_commas origin_var_list
| ID EQ COMMA origin_var_list
| ID EQ ID origin_var_list
| ID EQ ID
| ID ID ;

origin_func_decl ::=
ORIGIN type_type ID LPAREN type_type RPAREN
| ORIGIN type_type LPAREN type_type RPAREN
| ORIGIN type_type ID LPAREN type_type
| ORIGIN type_type ID type_type RPAREN ;

distinct_decl ::=
DISTINCT refer_name id_or_subid_list ;

id_or_subid_list ::=
id_or_subid

| id_or_subid COMMA id_or_subid_list
| id_or_subid id_or_subid_list
| id_or_subid extra_commas id_or_subid_list ;

id_or_subid ::=
ID

| ID LBRACKET INT_LITERAL RBRACKET ;

distribution_decl ::=
DISTRIBUTION ID EQ refer_name
LPAREN opt_expression_list RPAREN ;

refer_name ::=
ID

| ID DOT refer_name ;

dependency_statement_body ::= DISTRIB expression ;

parameter_decl ::=
PARAM type ID

| PARAM type ID COLON expression ;

35



expression ::=
operation_expr

| literal
| function_call
| list_expr
| map_construct_expression
| quantified_formula
| set_expr
| number_expr
| if_expr
| case_expr ;

literal ::=
STRING_LITERAL

| CHAR_LITERAL
| INT_LITERAL
| DOUBLE_LITERAL
| BOOLEAN_LITERAL
| NULL ;

operation_expr ::=
expression PLUS expression
| expression MINUS expression
| expression MULT expression
| expression DIV expression
| expression MOD expression
| expression POWER expression
| expression LT expression
| expression GT expression
| expression LEQ expression
| expression GEQ expression
| expression EQEQ expression
| expression NEQ expression
| expression AND expression
| expression OR expression
| expression DOUBLERIGHTARROW expression
| expression LBRACKET expression RBRACKET
| unary_operation_expr ;

unary_operation_expr ::=
MINUS expression %prec UMINUS

| NOT expression
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| AT expression
| LPAREN expression RPAREN ;

quantified_formula ::=
FORALL type ID expression

| EXISTS type ID expression ;

function_call ::=
refer_name LPAREN opt_expression_list RPAREN

| refer_name ;

if_expr ::=
IF expression THEN expression ELSE expression

| IF expression THEN expression ;

case_expr ::= CASE expression IN map_construct_expression ;

opt_expression_list ::=
expression_list

| /*EMPTY*/ ;

expression_list ::=
expression COMMA expression_list

| expression
| expression extra_commas expression_list ;

semi_colon_separated_expression_list ::=
semi_ending_expression_list semi_colon_separated_expression_list

| semi_ending_expression_list expression_list ;

semi_ending_expression_list ::=
expression_list SEMI

| semi_ending_expression_list SEMI ;

map_construct_expression ::= LBRACE expression_pair_list RBRACE ;

expression_pair_list ::=
expression RIGHTARROW expression COMMA expression_pair_list

| expression RIGHTARROW expression ;

number_expr ::=
NUMSIGN set_expr
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| NUMSIGN type ;

list_expr ::=
LBRACKET opt_expression_list RBRACKET

| LBRACKET semi_colon_separated_expression_list RBRACKET
| LBRACKET comprehension_expr RBRACKET ;

set_expr ::=
explicit_set

| tuple_set ;

explicit_set ::= LBRACE opt_expression_list RBRACE ;

comprehension_expr ::= expression_list FOR type_var_lst opt_colon_expr ;

opt_colon_expr ::=
/* EMPTY */

| COLON expression ;

tuple_set ::= LBRACE comprehension_expr RBRACE ;

evidence_stmt ::= OBS evidence ;

evidence ::= value_evidence ;

value_evidence ::= expression EQ expression ;

query_stmt ::= QUERY expression ;

B Built-in operators and functions

B.1 Unary operators

The operators are listed in order of precedence, with highest precedence at the top.
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Table 1: Unitary Operators

operator argument type result type meaning

- Integer Integer minus
- Real Real minus
- RealMatrix RealMatrix minus
! Boolean Boolean negation

B.2 Binary operators

The operators are listed in order of precedence, with highest precedence at the top.
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Table 2: Binary Operators

left-hand type operator right-hand type result type meaning

Integer * Integer Integer multiply
Real * Real Real multiply

Timestep * Integer Timestep multiply
Integer / Integer Integer divide
Real / Real Real divide

Timestep / Integer Timestep divide
Integer % Integer Integer modulus
Real ^ Real Real power

Integer + Integer Integer plus
Real + Real Real plus

Timestep + Integer Timestep plus
String + String String concatenate
Integer - Integer Integer minus
Real - Real Real minus

Timestep - Integer Timestep minus
Integer < Integer Boolean less than
Real < Real Boolean less than

Timestep < Timestep Boolean less than
Integer > Integer Boolean greater than
Real > Real Boolean greater than

Timestep > Timestep Boolean greater than
Integer <= Integer Boolean less than or equal
Real <= Real Boolean less than or equal

Timestep <= Timestep Boolean less than or equal
Integer >= Integer Boolean greater than or equal
Real >= Real Boolean greater than or equal

Timestep >= Timestep Boolean greater than or equal
Any == Any Boolean equal to
Any != Any Boolean not equal to

Boolean & Boolean Boolean and
Boolean | Boolean Boolean or
Boolean => Boolean Boolean implies

B.3 Constants

Real e

The base of the natural logarithm (approximately equal to 2.71828).
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Real pi
The π constant (approximately equal to 3.14159).

B.4 Matrix operations

For functions, a type signature like RealMatrix eye(Integer dim) means that the func-
tion eye takes a single Integer and produces a RealMatrix.

RealMatrix inv(RealMatrix x)

Inverse of the matrix x.

RealMatrix transpose(RealMatrix x)

Transpose of the matrix x.

Real det(RealMatrix x)

Determinant of the matrix x.

Real trace(RealMatrix x)

Trace of the matrix x, i.e. the sum of the elements on the diagonal.

RealMatrix diag(RealMatrix vals)

Diagonal matrix with the given values on the diagonal. vals must be a column vector.

RealMatrix repmat(RealMatrix m, Integer rows, Integer cols)

Return the matrix m tiled rows times vertically and cols times horizontally.

RealMatrix sum(RealMatrix m)

Column-wise sum of a matrix. For example, sum([1, 2; 3, 4]) returns [4, 6].

RealMatrix hstack(RealMatrix arg1, ...)

RealMatrix hstack(Real arg1, ...)

Stack scalars or matrices horizontally. Accepts an arbitrary number of arguments. For exam-
ple, hstack(1, 2, 3) returns the row vector [1, 2, 3].

RealMatrix vstack(RealMatrix arg1, ...)

RealMatrix vstack(Real arg1, ...)

Stack scalars or matrices vertically. Accepts an arbitrary number of arguments. For example,
vstack(1, 2, 3) returns the column vector [1; 2; 3].

RealMatrix eye(Integer dim)

Identity matrix of the given size. For example, eye(5) returns a 5x5 identity matrix.

RealMatrix zeros(Integer rows, Integer cols)

Matrix of the given size, filled with zeros. For example, zeros(3, 4) returns a 3x4 matrix
of zeros.
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RealMatrix ones(Integer rows, Integer cols)

Matrix of the given size, filled with ones. For example, ones(3, 4) returns a 3x4 matrix
of ones.

RealMatrix abs(RealMatrix m)

Element-wise absolute value.

RealMatrix exp(RealMatrix m)

Element-wise exponential of a matrix.

Use square brackets to index into a matrix. If m is a two-dimensional matrix, m[i] returns the
i-th row of m. If m is a row or column vector, m[i] returns the i-th element of m. Note that the
resulting value is a RealMatrix. To get the i,j-th element, use toInt(m[i][j]).

It is a runtime error to perform matrix operations with dimensions that do not match.

B.5 Set operations

Any min(Set s)

Minimum of a set.

Any max(Set s)

Maximum of a set.

Real sum(Set s)

Sum of elements in a set of Real values.

Integer size(Set s)

Number of elements in a set.

Any iota(Set s)

Extract element from a singleton set. For example, iota({6}) evaluates to 6.

Note: Any is an internal BLOG type not meant to be used by the end user. It is necessary here
because the BLOG type system does not distinguish between, for example, a Set of Reals and
a Set of Integers. Assigning an Any value to a variable of the wrong type is a runtime er-
ror.

B.6 Conversions between types

Integer round(Real val)

Round a Real to the nearest Integer. For example, round(1.6) evaluates to 2.

Integer toInt(Real val)

Convert to Integer, rounding towards zero.
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Integer toInt(Boolean val)

Convert false to 0, true to 1.

Integer toInt(RealMatrix val)

Extract the element from a 1x1 RealMatrix, and convert it to an Integer by rounding towards
zero.

Real toReal(Boolean val)

Convert false to 0.0, true to 1.0.

Real toReal(Integer val)

Convert Integer to Real.

Real toReal(RealMatrix val)

Extract the element from a 1x1 RealMatrix, and convert it to a Real.

B.7 Trigonometric functions

Real sin(Real radians)

Sine of the given value.

Real cos(Real radians)

Cosine of the given value.

Real tan(Real radians)

Tangent of the given value.

Real atan2(Real y, Real x)

Arctangent. Analogous to the atan2 function in Java.

B.8 Miscellaneous functions

Integer abs(Integer x)

Real abs(Real x)

Absolute value.

Real exp(Integer x)

Real exp(Real x)

Exponential.

Real log(Integer x)

Real log(Real x)
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Natural logarithm.

Timestep next(Timestep t)

The next timestep.

Timestep prev(Timestep t)

The previous timestep.

Boolean isEmptyString(String s)

True iff string is empty.

RealMatrix loadRealMatrix(String s)

Load a RealMatrix from a text file. The space-separated formats produced by numpy and
Matlab are supported.

C Built-in distributions

This section lists the distributions included in BLOG standard library.

C.1 Bernoulli

Bernoulli distribution generates the value 1 with probability p and 0 with probability 1− p.

Parameters:

Real p, 0≤ p≤ 1

Support:

Integer, k ∈ {0,1}

Probability mass function:

P(X = k) =
{

p k = 1
1− p k = 0

Example: The following code defines a random function symbol x distributed according to a
Bernoulli distribution.

random Integer x ~ Bernoulli(0.5);

C.2 Beta

Parameters:
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Real α , α > 0
Real β , β > 0

Support:

Real, 0≤ x≤ 1

Probability density function:

f (x) =
xα−1(1− x)β−1∫ 1

0 xα−1(1− x)β−1dx

Example: The following code defines a random function symbol x distributed according to a Beta
distribution with α = 2 and β = 3

random Real x ~ Beta(2, 3);

C.3 Binomial

Binomial distribution generates the number of successes in a sequence of n independent Bernoulli
trials where each trial yields success with probability p.

Parameters:

Integer n, n≥ 0
Real p, 0≤ p≤ 1

Support:

Integer, k ∈ {0,1, . . . ,n}

Probability mass function:

P(X = k) =
(

n
k

)
pk(1− p)k,0≤ k ≤ n

Example: The following code defines a random function symbol x distributed according to a
Binomial distribution.

random Integer x ~ Binomial(10, 0.5);

C.4 BooleanDistrib

BooleanDistrib distribution generates true with probability p and false with probability 1−
p.

Parameters:
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Real p, 0≤ p≤ 1

Support:

Boolean, k ∈ {True,False}

Probability mass function:

P(X = k) =
{

p k = true
1− p k = false

Example: The following code defines a random function symbol x distributed according to a
BooleanDistrib distribution.

random Boolean x ~ BooleanDistrib(0.5);

C.5 Categorical

Refer to Section 9.2.

C.6 Dirichlet

Parameters:

RealMatrix (Column Vector) ᾱ , s.t. αi > 0,∀i ∈ {1, . . . ,K}

Support:

RealMatrix, x̄ ∈ RK,s.t.∀i ∈ {1, . . . ,K}xi ≥ 0,∑K
1 xi = 1

Probability density function:

f (x̄) =
1

Z(ᾱ)
∗

K

∏
i=1

xαi−1
i

Z(ᾱ) =
∏

K
i=1 Γ(αi)

Γ(∑K
i=1 αi)

Example: The following code defines a random function symbol x distributed according to a
Dirichlet distribution with ᾱ = (1,3,5)

fixed RealMatrix vector = [1; 3; 5];
random RealMatrix x ~ Dirichlet(matrix);
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C.7 Discrete

The Discrete distribution generates an integer from 0 to K−1, where the likelihood of each integer
is represented by the unnormalized probability vector p̄. The Discrete distribution is a simplifica-
tion of the Multinomial Distribution where n = 1.

Parameters:

RealMatrix (ColumnVector) p̄, p̄ ∈ R, p0 ≥ 0, . . . , pK−1 ≥ 0,s.t.∑K−1
0 pi > 0

Support:

Integer k ∈ {0,1, . . . ,K−1}

Probability mass function:
P(X = k) =

pk

∑
K−1
i=0 pi

Example: The following code defines a random function symbol x distributed according to a
Discrete distribution with normalized probabilities 0.5,0.3,0.2.

fixed RealMatrix vec = [5; 3; 2];
random Integer x ~ Discrete(vec);

C.8 Exponential

The exponential distribution generates the interarrival time between two events in a Poisson pro-
cess.

Parameters:

Real λ , λ > 0

Support:

Real, x≥ 0

Probability density function:
f (x) = λ exp(−λx),x≥ 0

Example: The following code defines a random function symbol x distributed according to an
Exponential distribution.

random Real x ~ Exponential(0.2);
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C.9 Gamma

Parameters:

Real k, k > 0
Real λ , λ > 0

Support:

Real, x > 0

Probability density function:

f (x) =
λexp(−λx)(λx)k−1

Γ(k)

Γ(k) =
∫

∞

0
tk−1exp(−t)dt

Example: The following code defines a random function symbol x distributed according to a
Gamma Distribution.

random Real x ~ Gamma(2.0, 4.0);

C.10 Gaussian

Parameters:

mean, Real µ , µ ∈ R
variance Real σ2, σ2 > 0

Support:

Real, x ∈ R

Probability density function:

f (x) =
1

σ
√

2π
exp(
−(x−µ)2

2σ2 )

Example: The following code defines a random function symbol x distributed according to a
Gaussian distribution with mean −1 and variance 2.

random Real x ~ Gaussian(-1, 2);
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C.11 Geometric

Geometric distribution generates the number of failures before the first success in a sequence of
independent Bernoulli trials with probability of success p.

Parameters:

Real p, 0≤ p≤ 1

Support:

Integer, k ∈ {0,1,2, . . .}

Probability mass function:
P(X = k) = p(1− p)k

Example: The following code defines a random function symbol x distributed according to a
Geometric distribution where each Bernoulli trial has a probability of success p = 0.2

random Integer x ~ Geometric(0.2);

C.12 Laplace

Parameters:

Real µ , µ ∈ R
Real b, b > 0

Support:

Real, x ∈ R

Probability mass function:

f (x) =
1

2b
exp(
−|x−µ|

b
)

Example: The following code defines a random function symbol x distributed according to a
Laplace distribution with mean µ = 1.0 and scale b = 2.0

random Real x ~ Laplace(1.0, 2.0);

C.13 Multinomial

The multinomial distribution contains k categories. During a single trial, exactly one of the k
categories is selected. The probability of selecting a particular category i is pi

∑
k
i=1 pi

. The process is
repeated independently n times, and the resultant counts of each category are returned.
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Parameters:

Integer n, n ∈ {0,1,2, . . .}
RealMatrix (Column Vector) p̄, p ∈ Rk p1 ≥ 0, p2 ≥ 0, . . . , ..pk ≥ 0,s.t.∑k

i=1 pi > 0

Support:

RealMatrix (Column Vector), x̄ ∈ Zk,s.t.xi ∈ {0,1,2, . . . ,n}∀i ∈ {0,1,2, . . . ,k}

Probability mass function:

P(X = x1, . . . ,xk) =
n!

x1!× . . .× xk!
px1

1 . . . pxk
k

Example: The following code defines a random function symbol x distributed according to a
Multinomial distribution.

fixed RealMatrix m = [1; 1; 2];
random RealMatrix x ~ Multinomial(4, m);

C.14 MultivarGaussian

Parameters:

RealMatrix (Column Vector )µ̄ , µ̄ ∈ RK

RealMatrix (Column Vector) Σ, symmetric and semi-definite.

Support:

RealMatrix, x̄ ∈ ZK

Probability density function:

f (x̄) =
1√

(2π)K|Σ|
exp(−1

2
(x̄−µ)T

Σ
−1(x̄−µ))

Example: The following code defines a random function symbol x distributed according to a

Multivariate Gaussian with mean µ̄ =

(
1
1

)
and covariance Σ =

(
1 0
0 3

)
fixed RealMatrix mu = [1; 1];
fixed RealMatrix covariance = [1, 0; 0, 3];
random RealMatrix x ~ MultivarGaussian(mu, covariance);
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C.15 NegativeBinomial

NegativeBinomial distribution generates the number of failures until the rth success in a sequence
of independent Bernoulli trials each with probability of success p.

Parameters:

Integer r, r ∈ {1,2, . . .}
Real p, 0≤ p≤ 1

Support:

Integer, k ∈ {0,1,2, . . .}

Probability mass function:

P(X = k) =
(

k+ r−1
k

)
pr(1− p)k

Example: The following code defines a random function symbol x distributed according to a
Negative Binomial distribution with probability of success p = 0.8 and number of failures r =
2.

random Integer x ~ NegativeBinomial(2, 0.8);

C.16 Poisson

Given a success probability p very close to 0, and n independent Bernoulli trials such that λ = np,
the Poisson distribution generates a good approximation to the number of successful trials.

Parameters:

Real λ , λ > 0

Support:

Integer, k ∈ {0,1,2, . . .}

Probability mass function:

P(X = k) = exp(−λ )∗ λ k

k!

Example: The following code defines a random function symbol x distributed according to a
Poisson distribution with mean λ = 3.0

random Integer x ~ Poisson(3.0);
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C.17 UniformChoice

UniformChoice distribution chooses an element uniformly from the set S, whose objects are all of
type T .

Parameters:

Real S, a set of objects

Support:

T, k ∈ S

Probability mass function:

P(X = k) =
1
|S|

Example: The following code defines a random function symbol x that selects between the colors
Green, Red, and Blue uniformly at random.

type Color;
distinct Color Green, Red, Blue;
random Color x ~ UniformChoice({c for Color c});
query x;

C.18 UniformInt

UniformInt distribution generates an Integer uniformly at random between the between a lower
bound a and an upper bound b. a and b are both included in the set of integers which are uniformly
sampled from.

Parameters:

Integer a, a ∈ Z
Integer a, b ∈ Z
a≤ b

Support:

Integer, k ∈ {a,a+1, . . . ,b−1,b}

Probability mass function:

P(X = k) =
{ 1

b−a+1 a≤ k ≤ b
0 else

]
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Example: The following code defines a random function symbol x that selects uniformly at ran-
dom from the set of integers {1,2,3}

random Integer x ~ UniformInt(1, 3);

C.19 UniformReal

UniformReal distribution generates a Real uniformly at random between the between a lower
bound a and an upper bound b. The lower bound a is inclusive but the upper bound is exclu-
sive.

Parameters:

Real a, a ∈ R
Real b, b ∈ R
a < b

Support:

Real, x ∈ [a,b)

Probability density function:

f (x) =
{ 1

b−a a≤ x < b
0 else

Example: The following code defines a random function symbol x that generates a Real uni-
formly at random between 0.0 and 1.0.

random Real x ~ UniformReal(0, 1);

C.20 UniformVector

v is an argument list of 1× 2 RealMatrix row vectors with arbitrary length k. Denote vi,L as
the first element in the ith row vector and vi,U as the second element in the ith row vector. Unifor-
mVector generates a RealMatrix column vector of dimension k where element i is uniformly
distributed between vi,L and vi,U .

Parameters:

RealMatrix v1, v1 ∈ R2,v1,L < v1,U
. . .
RealMatrix vk, vk ∈ R2,vk,L < vk,U

Support:
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RealMatrix(Column Vector), x̄ ∈ Rk,
⋂k

i=1 vi,L ≤ x̄i ≤ vi,U

Probability density function:

f (x̄) =
1

∏
k
i=1(vi,U − vi,L)

Example: The following code defines a random function symbol x that generates a RealMatrix
column vector of dimension 2 whose first element is a Real that is uniformly distributed between 0
and 0.5 and whose second element is a Real that is uniformly distributed between 5 and 10.

fixed RealMatrix a = [0, 0.5];
fixed RealMatrix b = [5, 10];
random RealMatrix x ~ UniformVector(a, b);

Table 3: Distributions in BLOG

distribution argument type value

Bernoulli Real in [0,1] binary 0/1
Beta Positive Real, Positive Real Real in [0,1]

Binomial Nonnegative Integer, Real Nonnegative Integer
BooleanDistrib Real in [0,1] Boolean

Categorical Map
Dirichlet Column Vector Column Vector
Discrete ColumnVector Integer

Exponential Positive Real Nonnegative Real
Gamma Positive Real, Positive Real Positive Real

Gaussian Real, Real Real
Geometric Real in [0,1] Nonnegative Integer

Laplace Real, Positive Real Real
Multinomial Nonnegative Integer, ColumnVector ColumnVector

MultivarGaussian ColumnVector, MatrixReal ColumnVector
NegativeBinomial Positive Integer, Real in [0,1] Integer

Poisson Real Nonnegative Integer
UniformChoice Set Element in Set

UniformInt Integer, Integer Integer
UniformReal Real, Real Real

UniformVector MatrixReal’s RealMatrix
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