
The BLOG Language Reference
(BLOG version 0.8)

Lei Li
Computer Science Division

University of California Berkeley
leili@cs.berkeley.edu

Stuart Russell
Computer Science Division

University of California Berkeley
russell@cs.berkeley.edu

June 15, 2014

Abstract

This document introduces the syntax of BLOG, a probabilistic programming language, for
describing random variables and their probabilistic dependencies. BLOG defines probabilis-
tic generative models over first-order structures. For example, all Bayesian networks can be
easily described by BLOG. BLOG has the following features: (a) it employs open-universe
semantics; (b) it can describe relational uncertainty; (c) it can handle identity uncertainty; and
(d) it is empowered by first-order logic. The syntax as described in this document corresponds
to BLOG version 0.8. The current version represents a significant redesign and extension to
previous versions of BLOG, based on the principles of usability and implementation efficiency.

1

mailto:leili@cs.berkeley.edu
mailto:russell@cs.berkeley.edu

Contents
1 Basic language concepts 4

2 Declaring types 4

3 Fixed functions 5
3.1 Constants . 5

4 Distinct symbols 6

5 Random functions 6

6 Number statements 7
6.1 Origin functions . 7

7 Dependency statement 8

8 Observing evidence 8

9 Issuing queries 9

10 Expressions 9
10.1 Fixed expression . 10
10.2 Quantified formula . 10
10.3 Set expressions . 11
10.4 TupleSet . 11

11 Array and Matrix 11
11.1 Constant array . 11
11.2 Constant list literals . 12
11.3 Matrix . 12
11.4 Linear algebra operations . 12

12 Map 13
12.1 Multi-dimensional map . 14

13 Probability Distribution Library 14
13.1 Elementary Distribution . 14
13.2 Categorical distribution as defined by probability mass table 14
13.3 TabularCPD . 14

13.3.1 Multiple dependent variables . 15

14 Extending BLOG 15
14.1 User defined distribution . 15

2

15 A comprehensive example 17

Appendices 18

A A Brief History of BLOG 18

B BLOG Grammar Definition 18

C Built-in operators and functions 23

D Built-in distributions 26

3

1 Basic language concepts

A BLOG program consists a list of statements. Each statement ends with semicolon(;). Statements
include

1. Type declarations;
2. Distinct symbol declarations;
3. Fixed function declarations;
4. Random function declarations;
5. Origin function declarations;
6. Number statements;
7. Evidence statements, and;
8. Query statements.

BLOG is strongly typed, therefore every variable and function should explicitly specify a type.
Each BLOG program defines a set of random variables and their probabilistic dependencies. A toy
example of defining a random variable in BLOG is:

random Real x ~ Gaussian(0, 1);

which states that a real-valued random variable x is distributed according to the standard normal
distribution. To specify a dependent variable y|x∼N (x,1):

random Real y ~ Gaussian(x, 1);

2 Declaring types

BLOG is a strongly typed language. Each variable should have an associated type. BLOG has the
following built-in types: Boolean, Integer, Real, String, Timestep, RealMatrix,
and array (which is described later). There are literals in built-in types, e.g. 1.0, "abc", true,
false.

Additionally, a user may define his or her own types. The syntax for declaring a type in BLOG
is:

type typename;

For example, the following line of BLOG declares a User type:

type User;

4

3 Fixed functions

A fixed function always has the same semantic interpretation, i.e. its value does not change
over possible worlds. To declare a function with fixed interpretation for all satisfying possible
worlds:

fixed type0 funcname(type1) = expression;

This statement defines a function with name funcname with one argument, of type type1, and
with return type type0.

The function body is an expression, which can be

• a literal of built-in types;
• an expression using built-in operators such as a+b, (see later sections);
• a function call to an external interpretation implemented in a Java class, with passing of fixed

term as arguments.

The following example defines a function to calculate the sum of squares:

random Real sumsquare(Real x, Real y) = x ^ 2 + y ^ 2;

Functions can have zero or multiple arguments as well. Functions without arguments are con-
stants.

3.1 Constants

A constant is a zero-ary fixed function. Constants are defined in the following form:

fixed typename name = expression;

where expression does not contain any free variables.

For example, constants can be defined as type literals:

fixed Real a = 1.0;
fixed Boolean b = true;

Constants may also be defined using built-in functions (note that a is already defined above):

fixed Real c = 1.0 + a;

Such names can be referred to anywhere that fixed zero-ary function can appear. For exam-
ple:

random Integer x ~ Poisson(a);

Here x follows a Poisson distribution with the parameter set to a.

5

4 Distinct symbols

There is a special type of functions, distinct symbols. Distinct symbols are fixed zero-ary functions
without function bodies. Distinct symbols may be defined as follows:

distinct typename name1, name2, name3, ... ;

This statement defines several symbols of type typename, name1, name2, name3 These
symbols will have a fixed interpretation across all satisfying possible worlds. In addition, all these
symbols will have different interpretations from each other. We can have multiple distinct
statements in one BLOG model, and all distinct symbols for a given type will have distinct inter-
pretations in possible worlds. In this sense, these symbols are equivalent to “objects” in model
structures. Indeed, the distinct keyword is usually used to define possible values for a user-defined
type.

In addition, we can define arrays of distinct symbols with the following statement:

distinct typename name[int];

For example: the following BLOG code declares one hundred Person symbols.

type Person;
distinct Person P[100];

We can use P[0], P[1] to refer to these symbols later. Note that the symbols are indexed starting
from 0.

Built-in distinct symbols: literals There are predefined distinct symbols for Boolean, Integer,
Real, and String, including all integers, all real numbers, and text strings, e.g. 1, 3.14, “hello”.
These predefined symbols are also called literals. Also, Timestep has its own notion of time tick:
@0, @1, @2, etc.

5 Random functions

Random functions may have different interpretations across possible worlds. Random functions
are defined in a similar way as fixed functions, but with the random keyword. To declare a random
function, use the following:

random type0 funcname(type1 x) dependency-expression;

This statement defines a random function with name funcname with one argument, of type
type1, and with return type type0. The notion of a dependency statement will be introduced
later, but for now consider this to be a probability distribution.

6

As a simple example, we can declare the height of a Person with the following BLOG model:

type Person;
distinct Person Alice, Bob;
random Real height(Person p) ~ Gaussian(1.70, 0.25);

6 Number statements

BLOG supports open world semantics, i.e. the number of objects in possible worlds can be de-
clared in the language itself. Traditional graphical models are constrained to a known, fixed num-
ber of objects in all worlds, and thus do not support open world semantics. For a user declared
type, number statements specify how many objects there are of each type, and how they are gener-
ated:

#typename dependency-expression;

For example, the following example declares the number of Persons according to a Poisson
distribution:

type Person;
#Person ~ Poisson(10.0);

6.1 Origin functions

Origin functions specify related groups of generated objects in possible worlds. They may be
defined as follows:

origin type0 funcname(type1);

An origin function has exactly one argument type and one return type. Once specified, objects may
be generated from an origin function as follows:

#typename(origin_function=x, ...) dependency-expression;

Below is one example of a number statement with an origin function. It declares that the total
number of aircraft follows a Poisson distribution, that each Blip has a source, which is an Aircraft
object, and that the number of Blips generated by a given Aircraft follows a Bernoulli distribu-
tion.

type Aircraft;
type Blip;
#Aircraft ~ Poisson(10.0);

7

origin Aircraft Source(Blip);
#Blip(Source=a) ~ Bernoulli(0.5);

7 Dependency statement

In both nonrandom function declarations and number statements, the main body consists of depen-
dency statements, which specify a generative process. A dependency statement can be of one of the
following forms: simple distribution clause, simple operator clause, or conditional clauses.

A distribution clause consists of the symbol∼, representing sampling, followed by the distribution
name and arguments. Arguments must match the types of the distribution’s parameters.

~ Distribution(args)

For example, below is a dependency statement to sample values from a Poisson distribution.

~ Poisson(10.5)

The operator clause is specified as

= expression

where expression is an arithmetic or relational operation.

Conditional clauses use logical branches of the form if then else,

if cond then clause1
else clause2

where cond is a Boolean valued expression, and clause1 and clause2 can be one of the three
types of clauses: simple distribution clause, operator clause, or conditional clause.
Example 1 (Uneven coin). There are two coins, one evenly weighted and one skewed. However,
there is no visually distinction between the two. Each time we pick a coin, we flip it and check
which face appears.

random Boolean even ~ BooleanDistrib(0.5);
random Boolean head

if even then ~ BooleanDistrib(0.5)
else ~ BooleanDistrib(0.8);

8 Observing evidence

Evidence statements may be declared in two ways. The first is form is known as value evidence,
and is of form:

8

obs expression1 = expression2;

where expression1 should be random function application expression without free variables.
For example:

random Real x ~ Gaussian(1.0);
obs x = 0.5;

The second way is known as symbol evidence, and is of form:

obs {type type0 : expression(x)} = { x1, x2, ... }

For example, in the aircraft example, blips may be specified in symbol evidence as follows:

obs {Blip b} = {b1, b2, b3};

This defines three blips with names b1, b2, and b3. These names can be used as expressions in
queries, which are described next.

9 Issuing queries

To specify a query, use the form:

query expression;

where expression is a function application expression without free variables or formulas. The
result will be the posterior distribution given the observations.
Example 2 (Uneven coin (continued)). There are two coins, one evenly weighted and one skewed.
However, there is no way to visually distinguish the two. Each time we pick a coin, we flip it and
check which face lands facing up. What is the probability of the coin being even after we observe
a head?

random Boolean even ~ BooleanDistrib(0.5);
random Boolean head

if even then ~ BooleanDistrib(0.5)
else ~ BooleanDistrib(0.8);

obs head = true;
query even;

10 Expressions

An expression can include both nonrandom and random terms. Expressions are of the following
forms:

9

• a reference to a literal of a built-in type, e.g. Integer, Real, String, Boolean and Timestep.

• a reference to a distinct symbol;

• a reference to a constant symbol;

• a proper reference to an element in Array, with index of general expression;

• a reference to a fixed, random or origin function of form randomfun(p1, p2, ...),
where arguments p1, p2, ... are expressions;

• an arithmetic operation on numerical type: e1 + e2, e1 - e2, e1 * e2, e1 / e2, -
e1, + e1, - e1, (e1), where e1 and e2 are also expressions of type Integer or Real;

• a logical expression on Boolean type: e1 & e2, e1 | e2, ! e1, (e1) where e1 and
e2 are also expressions of type Boolean;

• a relational expression: e1 > e2, e1 >= e2, e1 < e2, e1 <= e2, where e1 and e2
are expressions of comparable types, or;

• an equality expression: e1 == e2, e1 != e2, where e1 and e2 are themselves expres-
sions;

• a quantified expression: forall t1 e1, exists t2 e2, where t1 and t2 are types in
this BLOG model, and e1 and e2 are themselves expressions;

10.1 Fixed expression

A fixed expression is an expression that does not contain any random function symbols. For ex-
ample:

1.0 + 2.0 * 3.0
a - 2.0
Twice(10.0) * 5.5

Where Twice(·) is declared as

fixed Real Twice(Real x) = x * 2;

10.2 Quantified formula

BLOG allows quantified formulas, as in first-order logic. To specify a universal quantified for-
mula,

forall typename x expression

To specify an existential quantified formula,

10

exists typename x expression

10.3 Set expressions

A set expression is a special type of expression which can only be used as an argument in a function
call, and as observed symbol evidence.

{typename x:condition(x)}

For example, to specify uniform choice from all balls,

type Ball;
#Ball ~ Poisson(10.0);
random Ball choice() ~ UniformChoice({Ball b});

To specify symbol evidence,

obs {Ball b} = {B1, B2, B3};

10.4 TupleSet

A TupleSet is a set comprehension.

{<expression1>, <expression2> for typename1 x}

11 Array and Matrix

To declare an array type

type[]

Currently, only Integer arrays and Real arrays are fully supported. Arrays of other types are par-
tially supported. Arrays are zero-indexed. Arrays can be used as return type of functions, but not
as arguments of functions. However, some distributions take arrays as arguments.

11.1 Constant array

To declare a constant array, use the following form:

fixed type[] name = List_literal;

For example, to declare an array of natural numbers:

11

fixed Integer[] c = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

An element of an array can be referenced as c[0], c[1], c[2], etc.

11.2 Constant list literals

As we already seen, we can use square brackets, [] to denote constant list literals. Elements in a
list are separated by commas (,). Lists can also be nested within other list. A shorthand notation
is to use semicolons (;) to separated multiple lists within a list. Thus, the following two lists are
equivalent:

[1, 2, 3; 4, 5, 6];
[[1, 2, 3], [4, 5, 6]];

Constant list literals are used to assign values to arrays, or to pass parameters to functions.

11.3 Matrix

To define a Matrix

fixed RealMatrix table = [...];

For example, a two dimensional array of int will be

fixed RealMatrix table = [[1, 2, 3], [4, 5, 6]];

The following syntax in short hand is also correct:

fixed RealMatrix table = [1, 2, 3; 4, 5, 6];

For example, a transition matrix in Kalman filters with Newton dynamics can be declared as:

fixed RealMatrix A = [1, 1, .5; 0, 1, 1; 0, 0, 1];

An element in such a dimensional array can be referred as A[0][0].

11.4 Linear algebra operations

BLOG supports the following linear algebra operations.

• vector plus, minus, multiplcation. Both arguments should be RealMatrix. Result is a
vector, i.e. RealMatrix;

12

fixed RealMatrix a = [1, 2];
fixed RealMatrix b = [4, 5];
random RealMatrix x = a + b - a;
fixed RealMatrix a = [1, 2];
fixed RealMatrix b = [4, 5];
fixed RealMatrix c = [1, 2; 3, 4];
fixed RealMatrix d = [4, 5; 6, 7];
random RealMatrix w = a * 10.0 + 20.0 * b;
random RealMatrix y = c * d;
random RealMatrix z = c * 3.0 + 4.0 * d - c;
random RealMatrix u = a * c;
fixed RealMatrix e = [10; 20];
random RealMatrix v = c * e;

• matrix inverse.

fixed RealMatrix c = [1, 2; 3, 4];
random RealMatrix s = inv(c);

• matrix determinant. Result is Real.

fixed RealMatrix c = [1, 2; 3, 4];
random Real t = det(c);

• transpose.

The full list is in appendix, Table 3.

12 Map

Maps are specified using braces.

{key1 -> value1, key2 -> value2}

For example,

{true -> 0.3, false -> 0.7}

A Map’s key must be some constant, while its value can be evaluated as the value of a expression,
as long as the type matches.

{true -> x^2, false -> y/2}

In addition, type2 in a map can be of the Distribution type, which will be introduced in
Section 13.

13

12.1 Multi-dimensional map

The type in a map can be an array, which results in a multi-dimensional map. For example,

{[1, 1] -> 0.1, [1, 2] -> 0.3, [2, 1] -> 0.2, [2, 2] -> 0.4};

This will be useful in creating TabularCPD (see later sections) with multiple parent variables.

13 Probability Distribution Library

13.1 Elementary Distribution

Currently, many distributions are supported by BLOG. A full list of distributions is included in the
appendix.

For example, the Gaussian distribution can be referenced via the form:

Gaussian(Real, Real)

13.2 Categorical distribution as defined by probability mass table

The Categorical distribution is defined as follows:

Categorical(Map_expression);

The map expression defines the probability mass over possible values of the distribution.

For example:

Categorical({true -> 0.3, false -> 0.7});

defines a distribution where sampling yields a 0.3 probability of drawing true, and 0.7 probability
of drawing false.

The probability should sum up to 1.0; otherwise, it will by default add an entry null with prob-
ability equal to the residual probability. On the other hand, if the probabilities sum to more than
1.0, the BLOG compiler will produce a runtime error.

13.3 TabularCPD

To declare and construct a tabular conditional probability distribution, use the form:

TabularCPD(Map_expression, expression);

14

which evaluates expression as a key and generates values from the map. Note the Map_expression
should be a map from literals or array of literals to a distribution expression.

For example, to draw from Bernoulli distribution according to the value of x,

TabularCPD({true -> ~ Bernoulli(0.3),
false -> ~ Bernoulli(0.6)}, x);

With this comprehension, we can even declare a conditional mixture of Gaussians easily. For
example:

random Integer z ~ Categorical({0 -> 0.4, 1 -> 0.6});
random Real x ~ TabularCPD({0 -> ~Gaussian(5, 1.0),

1 -> ~Gaussian(10, 1.0)}, z);

13.3.1 Multiple dependent variables

To declare that a TabularCPD is dependent on several parent variables, use a multi-dimensional
map:

TabularCPD({[0, 0] -> ~ Gaussian(5, 1.0),
[0, 1] -> ~ Gaussian(10, 1.0),
[1, 0] -> ~ Gaussian(2, 4.0),
[1, 1] -> ~ Gaussian(20, 4.0)}, [x, y])

14 Extending BLOG

14.1 User defined distribution

Probability distributions are implemented in Java. Distribution classes should implement the in-
terface blog.distrib.CondProbDistrib. Alternatively, distributions can be declared as
subclass of blog.distrib.AbstractCondProbDistrib. By default, the BLOG engine
will look up distribution classes in the package blog.distrib. In addition, it will look up
distribution classes under the default empty package.

Note: using a distribution class to implement a deterministic operation is supported but not recom-
mended.

Below is one example of a uniform distribution on Integers.

import java.util.*;
import blog.*;
import blog.distrib.*;
import blog.common.Util;

15

import blog.model.Type;

public class UniformInt extends AbstractCondProbDistrib {
public UniformInt(List params) {

try {
lower = ((Number) params.get(0)).intValue();
upper = ((Number) params.get(1)).intValue();
if ((lower > upper) || (params.size() > 2)) {

throw new IllegalArgumentException();
}

} catch (RuntimeException e) {
throw new IllegalArgumentException(

"UniformInt CPD expects two integer arguments "
+ "[lower, upper] with lower <= upper. Got: " + params);

}
}

public double getProb(List args, Object value) {
if (!args.isEmpty()) {

throw new IllegalArgumentException(
"UniformInt CPD does not take any arguments.");

}
if (!(value instanceof Integer)) {

throw new IllegalArgumentException(
"UniformInt CPD defines distribution over objects of class "

+ "Integer, not " + value.getClass() + ".");
}
int x = ((Integer) value).intValue();

if ((x >= lower) && (x <= upper)) {
return 1.0 / (upper - lower + 1);

}
return 0;

}

public Object sampleVal(List args, Type childType) {
if (!args.isEmpty()) {

throw new IllegalArgumentException(
"UniformInt CPD does not take any arguments.");

}

double x = lower + Math.floor(Util.random() * (upper - lower + 1));

16

return new Integer((int) x);
}

private int lower;
private int upper;

}

15 A comprehensive example

Example 3 (Hidden Markov models). The following represents a hidden Markov model for genetic
sequences with four states and four output symbols. The state at each time step transitions to
another with respect to a conditional distribution specified by a TabularCPD. Each state at each
time step emits an observation with respect to another CPD. After making a few observations, we
can query the states for each time step.

type State;
distinct State A, C, G, T;
type Output;
distinct Output ResultA, ResultC, ResultG, ResultT;
random State S(Timestep t)

if t == @0 then
~ Categorical({A -> 0.3, C -> 0.2, G -> 0.1, T -> 0.4})

else ~ TabularCPD(
{A -> ~ Categorical({A -> 0.1, C -> 0.3, G -> 0.3, T -> 0.3}),
C -> ~ Categorical({A -> 0.3, C -> 0.1, G -> 0.3, T -> 0.3}),
G -> ~ Categorical({A -> 0.3, C -> 0.3, G -> 0.1, T -> 0.3}),
T -> ~ Categorical({A -> 0.3, C -> 0.3, G -> 0.3, T -> 0.1})},
S(prev(t)));

random Output O(Timestep t)
~ TabularCPD(

{A -> ~ Categorical({ResultA -> 0.85, ResultC -> 0.05,
ResultG -> 0.05, ResultT -> 0.05}),

C -> ~ Categorical({ResultA -> 0.05, ResultC -> 0.85,
ResultG -> 0.05, ResultT -> 0.05}),

G -> ~ Categorical({ResultA -> 0.05, ResultC -> 0.05,
ResultG -> 0.85, ResultT -> 0.05}),

T -> ~ Categorical({ResultA -> 0.05, ResultC -> 0.05,
ResultG -> 0.05, ResultT -> 0.85})},

S(t));

17

/* Evidence for the Hidden Markov Model.

*/
obs O(@0) = ResultC;
obs O(@1) = ResultA;
obs O(@2) = ResultA;
obs O(@3) = ResultA;
obs O(@4) = ResultG;

/* Queries for the Hidden Markov Model, given the evidence.

* Note that we can query S(5) even though our observations

* only went up to time 4.

*/
query S(@0);
query S(@1);
query S(@2);
query S(@3);
query S(@4);
query S(@5);

A A Brief History of BLOG

Bayesian Logic (BLOG) was first developed by Brian Milch in 2005. Since then, major con-
tribution is from various members of Professor Stuart Russell’s research group at University of
California Berkeley.

The initial syntax and semantics of BLOG was described in

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and An-
drey Kolobov (2005) "BLOG: Probabilistic Models with Unknown Objects". Proc.
19th International Joint Conference on Artificial Intelligence (IJCAI): 1352-1359.

Dr. Rodrigo Braz introduced Timestep into BLOG. Milch and Braz released BLOG 0.3 in 2008.

Dr. Lei Li has been leading the development of the language and BLOG inference system since
2011. Since then, the language sees major changes, as well as the inference engine. New algo-
rithms are introduced. However, the semantics of BLOG remain the same as the original.

B BLOG Grammar Definition

blog_program ::= opt_statement_lst;

18

opt_statement_lst ::= /* EMPTY */
| statement_lst;

statement_lst ::= statement:e statement_lst
| statement;

statement ::= declaration_stmt
| evidence_stmt
| query_stmt ;

declaration_stmt ::= type_decl
| fixed_func_decl
| rand_func_decl
| origin_func_decl
| number_stmt
| distinct_decl
| parameter_decl
| distribution_decl ;

type_decl ::= TYPE ID SEMI ;

type ::= refer_name
| array_type ;

array_type_or_sub ::= refer_name LBRACKET ;

array_type ::= array_type_or_sub RBRACKET
| array_type LBRACKET RBRACKET ;

opt_parenthesized_type_var_lst ::= /* EMPTY */
| LPAREN RPAREN
| LPAREN type_var_lst RPAREN ;

type_var_lst ::= type ID COMMA type_var_lst
| type ID ;

fixed_func_decl ::=
FIXED type ID opt_parenthesized_type_var_lst
EQ expression SEMI ;

rand_func_decl ::=
RANDOM type ID opt_parenthesized_type_var_lst

19

dependency_statement_body SEMI ;

number_stmt ::=
NUMSIGN refer_name opt_parenthesized_origin_var_list
dependency_statement_body SEMI;

opt_parenthesized_origin_var_list ::= /* EMPTY */
| LPAREN origin_var_list RPAREN ;

origin_var_list ::= ID EQ ID COMMA origin_var_list
| ID EQ ID ;

origin_func_decl ::=
ORIGIN type ID LPAREN type RPAREN SEMI ;

distinct_decl ::=
DISTINCT refer_name id_or_subid_list SEMI ;

id_or_subid_list ::= id_or_subid
| id_or_subid COMMA id_or_subid_list ;

id_or_subid ::= ID
| ID LBRACKET INT_LITERAL RBRACKET ;

distribution_decl ::=
DISTRIBUTION ID EQ refer_name
LPAREN opt_expression_list RPAREN SEMI ;

refer_name ::= ID
| ID DOT refer_name ;

dependency_statement_body ::= EQ expression
| distribution_expr
| IF expression THEN dependency_statement_body elseif_list ;

elseif_list ::= /* EMPTY */
| ELSE dependency_statement_body ;

parameter_decl ::= PARAM type ID SEMI
| PARAM type ID COLON expression SEMI ;

expression ::= operation_expr

20

| distribution_expr
| literal
| function_call
| list_construct_expression
| map_construct_expression
| quantified_formula
| set_expr
| number_expr
| refer_name ;

literal ::= STRING_LITERAL
| CHAR_LITERAL
| INT_LITERAL
| DOUBLE_LITERAL
| BOOLEAN_LITERAL
| NULL ;

operation_expr ::= expression PLUS expression
| expression MINUS expression
| expression MULT expression
| expression DIV expression
| expression MOD expression
| expression POWER expression
| expression LT expression
| expression GT expression
| expression LEQ expression
| expression GEQ expression
| expression EQEQ expression
| expression NEQ expression
| expression AND expression
| expression OR expression
| expression DOUBLERIGHTARROW expression
| expression LBRACKET expression RBRACKET
| array_type_or_sub expression RBRACKET
| unary_operation_expr ;

unary_operation_expr ::= MINUS expression
| NOT expression
| AT expression
| LPAREN expression RPAREN ;

quantified_formula ::=

21

FORALL type ID expression
| EXISTS type ID expression ;

function_call ::=
refer_name LPAREN opt_expression_list RPAREN ;

distribution_expr ::=
DISTRIB refer_name LPAREN opt_expression_list RPAREN;

opt_expression_list ::= /* EMPTY */
| expression_list ;

expression_list ::= expression COMMA expression_list
| expression ;

list_construct_expression ::=
LBRACKET opt_expression_list RBRACKET

| LBRACKET semi_colon_separated_expression_list RBRACKET ;

semi_colon_separated_expression_list ::=
expression_list SEMI semi_colon_separated_expression_list

| expression_list SEMI expression_list ;

map_construct_expression ::=
LBRACE expression_pair_list RBRACE ;

expression_pair_list ::=
expression RIGHTARROW expression COMMA expression_pair_list

| expression RIGHTARROW expression ;

number_expr ::= NUMSIGN set_expr
| NUMSIGN type ;

set_expr ::= explicit_set
| implicit_set
| tuple_set ;

explicit_set ::= LBRACE opt_expression_list RBRACE ;

implicit_set ::=
LBRACE type ID COLON expression RBRACE

| LBRACE type ID RBRACE ;

22

tuple_set ::=
LBRACE expression_list
FOR type_var_lst COLON expression RBRACE

| LBRACE expression_list FOR type_var_lst RBRACE ;

evidence_stmt ::= OBS evidence SEMI ;

evidence ::= symbol_evidence
| value_evidence ;

value_evidence ::= expression EQ expression ;

symbol_evidence ::= implicit_set EQ explicit_set ;

query_stmt ::= QUERY query SEMI ;

query ::= expression ;

C Built-in operators and functions

Table 1: Arithmetic operators on Integer and Real

operator interpretation example

+ plus x + y , 1.0 + 2
- minus x - y , 1.0 - 2

* multiply x * y , 1.0 * 2
/ divide x / y , 1.0 / 2
% modulus (only applied to Integers) x % y, 1.0 % 2
^ power x ^ y , 1.0 ^ 2
abs absolute value abs(x), abs(-1.0)
round rounding round(x), round(1.6)

23

Table 2: Operators on RealMatrix

operator interpretation example

+ plus x + y
- minus x - y

* multiply x * y
inv inverse inv(x)

transpose transpose transpose(x)
det determinant det(x)

repmat repeat a matrix repmat(x, 2, 3)
diag create a diagonal matrix diag(x)
vstack stacking scalars or matrices to create a larger one vstack(x, y, z)
hstack horizontally stacking scalars or matrices hstack(x, y, z)
eye identity matrix eye(3)
zeros zero matrix zeros(3, 4)
ones a matrix with all 1 ones(3, 4)
exp element-wise exponential exp(x)

Note the dimensionality should match.

Table 3: Conversion between types

operator interpretation example

toReal single element matrix, a number or Boolean into Real toReal(x)
toInt single element matrix, a number or Boolean into Int toInt(x)

Table 4: Logical operators on Boolean

operator interpretation example

& and x & y , (x > 3) & (x < 5)
| or x | y , (x > 5) | (x < 3)
! not ! x , ! (x > 3)
=> imply x => y , (x > 5) => (x > 3)

Table 5: Quantified formula

operator interpretation example

forall ∀ forall Person x height(x) > 1.0
exists ∃ exists Person x height(x) > 1.0

24

Table 6: Relational operators on Integer, Real and other comparable types

operator interpretation example

> greater than a > b , 2 > 1.0
>= greater than or equal to a >= b , 2 >= 1.0
< less than a < b , 1.0 < 2.0
<= less than or equal to a <= b , 1.0 <= 2.0

Table 7: Equality operator on all types

operator interpretation example

== equal to a == b
!= unequal to a != b

Table 8: Operators on String

operator interpretation example

+ concatenate "hello " + "world"
== equal to "abc" == "def"
!= unequal to "abc" != "def"

IsEmptyString() returns True if the string is empty IsEmptyString(a)

Table 9: Operators on Timestep

operator interpretation example

prev() previous Timestep prev(@1)
- Timestep minus an integer @10 - 1 == @9
+ Timestep plus an integer @10 + 1 == @11
% Timestep mod x % 10 == @0

* Timestep multiply an integer @10 * 2 == @20
/ Timestep divide an integer @10 / 2 == @5

25

Table 10: Arithmetic operators on Set

operator interpretation example

min minimum of elements a set min()
max maximum of elements in a set max()
sum summation of elements in a set sum()

D Built-in distributions
• Bernoulli(p), with probability of p generating 1, and 1− p generating 0.
• Beta(α , β), generating a real number x in [0,1] with probability density of xα−1(1−x)β−1

B(α,β) ,
where Beta function B is the normalization constant to ensure the total probability integrates
to 1.
• Binomial(n, p)
• BooleanDistrib(p), with probability of p generating True, and 1− p generating False.
• Categorical
• Dirichlet
• Exponential
• Gamma
• Gaussian
• Geometric
• Iota
• Laplace
• LinearGaussian
• Multinomial
• MultivarGaussian
• NegativeBinomial
• Poisson(λ), generating an integer x with probability λ x

x! e−λ .
• Size(S), deterministically returns the number of elements in the given set S.
• TabularCPD
• UniformChoice(S), uniformly choosing one element from the given set S.
• UniformInt
• UniformReal
• UniformVector

26

Table 11: Distributions in BLOG

distribution argument type value example

Bernoulli Real in [0,1] binary 0/1 Bernoulli(0.8)
Beta Real, Real Real in [0,1] Beta(1.0, 1.0)

Binomial Integer, Real Integer Binomial(10, 0.5)
BooleanDistrib Real in [0,1] Boolean BooleanDistrib(0.8)

Categorical Map see main text
Dirichlet Array of Real Array of Real Dirichlet([1, 1, 1])

Exponential Real Real Exponential(2.0)
Gamma Real, Real Real Gamma(3, 2.0)

Gaussian Real, Real Real Gaussian(2.0, 1.0)
Geometric Real in [0,1] nonnegative Integer Geometric(0.5)

Laplace Real, and positive Real Real Laplace(0, 1.0)
MultivarGaussian Array, 2D Array Array of Real MultivarGaussian([0, 0],

[1, 0; 0, 1])
NegativeBinomial Integer, Real in [0,1] Integer NegativeBinomial(4, 0.5)

Poisson Real nonnegative Integer Poisson(6.0)
UniformChoice Set UniformChoice({Person p})

UniformInt Integer, Integer Integer UniformInt(0, 10)
UniformReal Real, Real Real UniformReal(0, 1.0)

UniformVector Real’s RealMatrix UniformVector(0,1,0,1)

27

	Basic language concepts
	Declaring types
	Fixed functions
	Constants

	Distinct symbols
	Random functions
	Number statements
	Origin functions

	Dependency statement
	Observing evidence
	Issuing queries
	Expressions
	Fixed expression
	Quantified formula
	Set expressions
	TupleSet

	Array and Matrix
	Constant array
	Constant list literals
	Matrix
	Linear algebra operations

	Map
	Multi-dimensional map

	Probability Distribution Library
	Elementary Distribution
	Categorical distribution as defined by probability mass table
	TabularCPD
	Multiple dependent variables

	Extending BLOG
	User defined distribution

	A comprehensive example
	Appendices
	A Brief History of BLOG
	BLOG Grammar Definition
	Built-in operators and functions
	Built-in distributions

